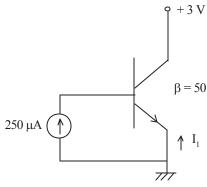
Time: 3 Hours Marks: 200


Instructions:

(i) Each question carries one mark.

(ii) Choose the correct or most appropriate answer from the given options to the following questions and darken, with blue/black ball point pen the corresponding digit 1, 2, 3 or 4 in the circle pertaining to the question number concerned in the OMR Answer Sheet, separately supplied to vou.

۱.	The material popularly used for contacts and interconnections in ICs is									
	(1)	Copper		(2)	Alum		(3)	Silver	(4)	Zinc
2.	Mat	ch the follo	owing							
	(a) Sampling			(P)	(P) Better S/N					
	(b)	Quantiza	tion	(Q)	(Q) Analog signal					
	(c)	Diode de	etector	(R)	Powe	r coupling				
	(d)	Index pro	ofile	(S)	FM d	lemodulation	1			
				(T)	Diago	onal clipping				
	Cod	le:								
		(a)	(b)	(c)		(d)				
	(1)	(P)	(Q)	(T)		(R), (S)				
	(2)	(T)	(T)	(Q)	, (R)	(R)				
	(3)	(Q)	(P)	(S),	(T)	(R)				
	(4)	(Q)	(P)	(S)		(T)				
3.	Number of electrons in any shell 'n' of an atom can be determined by the formula									
	(1)	$4n^2$		(2)	$3n^2$		(3)	$2n^2$	(4)	n^2
1.	The main purpose of the metalization process in IC manufacturing is									
	(1)	to act as	heat sink							
	(2)	to interco	onnect vario	us circui	t elem	ents				
	(3)	to protec	t chip from	oxidatio	n					
	(4)	to supply	a bonding	surface f	or moi	unting the ch	in			

5.

In the above circuit I_1 is

- (1) 12.75 mA
- (2) 12.5 mA
- (3) 12.75 mA
- (4) 5 mA

6. The threshold voltage of an n-channel MOSFET can be increased by _____

- (1) increasing the channel dopant concentration
- (2) reducing the channel length
- (3) reducing the channel dopant concentration
- (4) reducing the gate oxide thickness

7. The power efficiency of Class-A power amplifier is poor because

- (1) BJT used is biased at cut off
- (2) BJT conducts for less than 180°
- (3) Operating point of BJT used is fixed at the center of DC load line
- (4) BJT used is biased below cut off

8. A network has 7 nodes and 5 independent loops. The number of branches in the network is

(1) 13

- (2) 12
- (3) 11
- (4) 10

9. A series circuit consists of two elements has the following current and applied voltage

 $i = 4 \cos(2000t+11.32^{\circ})$ A and $v = 200 \sin(2000t+50^{\circ})$. The circuit elements are

(1) Resistance and Capacitance

(2) Capacitance and Inductance

(3) Inductance and Resistance

(4) Both Resistance

10. A distortion less transmission line has the following parameters:

$$R = 8 \Omega/m$$
; $L = 0.4 \mu A/m$; $C = 1 nF/m$

The attenuation constant of the line is

(1) 0.16

- (2) 0.4
- (3) 0.02
- (4) 0.8

11. Considering the following statements P and Q

P: At the resonant frequency the impedance of series RLC circuit is zero.

Q: In parallel GLC circuit, increasing the conductance G results in increase in its Q-factor. Which of the following is correct.

(1) P is false and Q is true

(2) Both P and Q are true

(3) P is true and Q is false

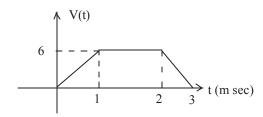
(4) Both P and Q are false

12. A band limited signal x(t) is having a Nyquist's rate of f_o Hz. The Nyquist's rate of x(t).cos 2π f_o t is

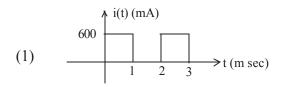
 $(1) 2 f_0$

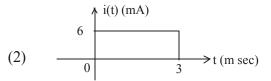
- (2) f_0
- (3) $3 f_0$
- (4) 4 f₀

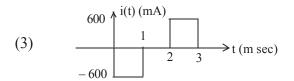
13. A DC voltage source is connected across a series RLC circuit. Under steady state conditions, the applied DC voltage drops entirely across the

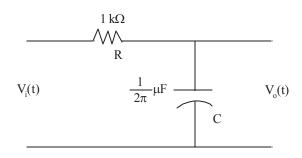

(1) R only

(2) Lonly


(3) C only


(4) R and L combination

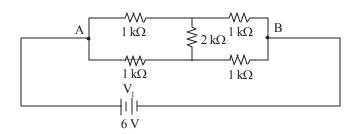

14. The voltage across a $100 \mu F$ capacitor is shown as


The current in the capacitor is

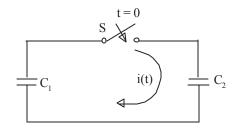
15. Consider an RC LPF as shown below

If $V_i(t)$ is a sinusoidal signal of frequency 1 kHz, then $V_o(t)$

(1) Leads $V_i(t)$ by 90°


(2) Lags behind V_i(t) by 45°

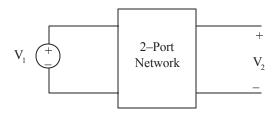
(3) Is in phase with $V_i(t)$


(4) Lags behind $V_i(t)$ by 30°

16. The current through the 2 k Ω resistance in the circuit shown below is

- (1) 0 mA
- (2) 1 mA
- (3) 2 mA
- (4) 6 mA

17. In the following figure, C_1 and C_2 are ideal capacitors. C_1 has been charged to 12V before the ideal switch S is closed at t=0. The current i(t) for all t is

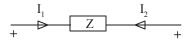


(1) zero

- (2) a step function
- (3) an exponentially decaying function
- (4) an impulse function

IS 2016 C 4 J

18. Consider a Two Port Network as shown below


If the network is described in terms of its z-parameters, with Port-2 open $G_{12} = V_2/V_1$ is

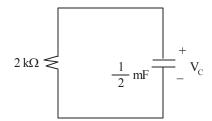
 $(1) - z_{21}/z_{11}$

(2) z_{21}/z_{11}

 $(3) - z_{12}/z_{11}$

- (4) z_{12}/z_{11}
- 19. Which one of the following parameters doesn't exist for the two-port network shown in the given figure

- (1) ABCD
- (2) Y
- (3) H
- (4) Z
- **20.** For a 2-port symmetrical bilateral network, if transmission parameters $A = 3 \Omega$ and $B = 1 \Omega$, the value of parameter C is
 - (1) 3 Ω


- (2) 8Ω
- (3) 10Ω
- $(4) 9 \Omega$
- **21.** A computer has the following negative numbes stored in binary form as shown. The wrongly stored number is
 - (1) 37 as 11011011

(2) -89 as 10100111

(3) -48 as 11101000

- (4) -32 as 11100000
- 22. A lossless transmission line operating at 4.5 GHz has $L = 2.5 \mu$ H/m and $z_0 = 75 \Omega$. The corresponding phase velocity is
 - (1) 135 Km/s
- (2) 30 Mm/s
- (3) 150 Km/s
- (4) 41.6 Mm/s

23. In the following RC circuit, $V_c(0) = 10 \text{ V}$.

Then, $V_{C}(t)$ is

(1) e^{-t}

- (2) $5e^{-t}$
- (3) $10e^{-t}$
- (4) $10 + e^{-t}$

- **24.** The radiation resistance of any antenna should be always
 - (1) As low as possible
 - (2) As high as possible
 - (3) Should be high for receiving antennas and low for transmitting antennas
 - (4) Should be low for receiving antennas and high for transmitting antennas
- **25.** Match List-I(Laws) with List-II(Applications) and select the correct answer.

List-I

- A. Ampere's law
- B. Biot's law
- C. Coulomb's law
- D. Gauss's law
- A B C D
- (1) c b a d
- (2) d b a c
- (3) d a b c
- (4) c a b d

List-II

To find the

- a. Force on a charge
- b. Force due to a current carrying conductor
- c. Electric flux density at a point
- d. Magnetic flux density at a point

- 26. Which of the following statements holds for the divergence of electric and magnetic flux densities?
 - (1) Both are zero
 - (2) These are zero for static densities but non zero for time varying densities
 - (3) It is zero for the electric flux density
 - (4) It is zero for the magnetic flux density

27.	. Directivity of antenna with normalized radiation intensity								
	u(0	$(0, 4) = \sin \theta \le \theta \le \frac{\pi}{2}$	<u>t</u>						
		$\phi \le 2\pi$ will be	2						
		1.546	(2)	2.546	(3)	3.546	(4)	4.446	
28.	 Which one of the following statements is correct? Short circuited stubs are preferred to open circuited stubs because the latter are (1) More difficult to make and connect (2) Made of a transmission line with a different characteristic impedance (3) Liable to radiate energy (4) Incapable of giving a full range of frequencies 								
29.		at is the directivity $\phi \le 2\pi$?	of antenna (2)		rmalized inte		θ, ϕ = cos (4)		
	. 1.	1 (50) (1.1.1	<u> </u>	1 5 1		1.1	CO.1.Y. 1 1	
30.	A digital TDM system multiplexes 24 voice signals. Each signal is sampled at a rate of 8 kHz and each sample is represented by an 8 bit word. In each rotation, if the multiplexer makes contact with all the signals, the number of bits/rotation at the output of the multiplexer is								
	(1)			192	(3)	•	(4)	1536	
31.	Which capacitor stores a higher amount of energy?								
	(1)	Air capacitor			(2)	Paper capa	acitor		
	(3)	Mica capacitor			(4)	Plastic film	n capacitor re	esistor	
32.	The colour code on a carbon resistor is red-red-black-silver. The value of this resistor is								
	(1)	22000 Ohms			(2)	2200 Ohm	IS		
	(3)	22 ± 5 % Ohms			(4)	22 ±10% (Ohms		
33.	Which of the following statements is correct								
	(1)	Thermistors have p			efficient onl	y			
	(2)	Varistors have nega		_		-			
	(3)	_		_	-				
	(3) Both varistors and thermistors are linear resistors(4) Both varistors and thermistors are temperature independent								

34.	If th	e resistance of a ma	terial falls	with increasi	ing tempera	ture it is said to	have			
	(1)	Negative temperat	ure coeffic	cient	(2)	Positive tempe	rature co	pefficient		
	(3)	Zero temperature o	coefficient		(4)	Independent o	f resista	nce		
35.	Mat	erials which can sto	re electric	al energy are	called					
	(1)	Magnetic materials	}		(2)	Semi conducto	ors			
	(3)	Dielectric materials	3		(4)	Super conduc	tors			
36.		v frequency response	_			amplifiers can b	e booste	d by using		
	(1)	Resistors, Resistor	'S		(2)	Coils, Capacit	ors			
	(3)	Capacitors, Coils			(4)	Transformers,	Transfo	mers		
37.	The	The temperature beyond which substances lose their permanent magnetic properties is known as								
	(1)	Critical temperatur		(2)	Curie temperature					
	(3)	Inversion temperat	ture		(4)	Conversion te	mperatu	re		
38.	The	property of materia	it can be rol	led into she	eets is called					
	(1)	Plasticity	(2)	Elasticity	(3)	Malleability	(4)	Ductility		
39.	Am	ong these which has	highest d	ielectric cons	tant ?					
	(1)	Polysterene	(2)	Mica	(3)	Cotton	(4)	Transformer oil		
40.	Mag	gnetically saturated f	errite							
	(1)	causes large hyster	resis							
	(2)	produces low eddy	current							
	(3)	interacts with ultra	sonic heat	radiations						
	(4)	interacts with elect	romagneti	ic waves						
41.	Afte	er curie temperature								
	(1)	Ferrimagnetic beco	-	•						
	(2)	Paramagnetic beco								
	(3)	Paramagnetic mate								
	(4)	Ferromagnetic bec	comes anti	ferro magnet	ic material					

·	the thermal equilibrium concentration of electrons is 5×10^4 /cm ³ . If thation is 1.5×10^{10} /cm ³ , the hole concentration is $(2) 0.3 \times 10^{16}$ /cm ³ $(3) 4.5 \times 10^6$ /cm ³ $(4) 0.3 \times 10^6$ /cm ³							
-	= 300 K is doped with Boron at a concentration of 2.5×10^{13} cm ⁻³ and win of 1×10^{13} cm ⁻³ . The resulting material is							
(1) p-type with thermal e	equilibrium hole concentration of $1.5 \times 10^{13} \text{ cm}^{-3}$							
(2) n-type with thermal equilibrium electron concentration of 1.5×10^{13} cm ⁻³								
	(3) p-type with thermal equilibrium hole concentration of 2.5×10^{26} cm ⁻³							
(4) n-type with thermal e	equilibrium electron concentration of $2.5 \times 10^{26} \text{ cm}^{-3}$							
In TV Signal Transmission	on AM is used for Video Broadcasting							
(1) for Bandwidth conservation								
(2) for having better picture quality								
(3) since AM is with better noise performance than FM								
(4) since AM signal travels over longer distances								
For a BJT, $I_C = 5.001$ mA, $I_B = 49$ μ A and $I_{CBo} = 1$ μ A, the DC current gain of BJT is								
(1) 91	(2) 100 (3) 80 (4) 50							
One of the applications of current mirror is								
(1) Output current limiting	g							
(2) Obtaining a very high	n current gain							
(3) Current feedback								
(4) Temperature stabilized biasing								
Match the following List-I with List-II								
Maker the following List-1								
List-I	List-II							
•	List–II P. Constant Voltage Source							
List-I								
List–I A. CB configuration	P. Constant Voltage Source							
List–I A. CB configuration B. Zener diode	P. Constant Voltage Source Q. Frequency Variation							
	instrinsic carrier concentration (1) 4.5×10^{15} /cm³ A sample of Silicon at T = Arsenic at a concentration (1) p-type with thermal etc. (2) n-type with thermal etc. (3) p-type with thermal etc. (4) n-type with thermal etc. (4) n-type with thermal etc. (5) for Bandwidth cons (6) for having better pic. (6) since AM is with (7) since AM signal transmission (8) since AM signal transmission (9) one of the applications of (1) Output current limiting (2) Obtaining a very high (3) Current feedback							

IS 2016 C 9 J

48.	When the JFET is no longer able to	o control the current, thi	is point is called the	}				
	(1) Breakdown voltage	(2)	Depletion region					
	(3) Saturated point	(4)	Pinch-off region					
49.	In a Varactor diode using alloy jun	nction, the transistor cap	acitance is proporti	onal to				
	(1) v_j^2 (2)	$1/v_{j} \tag{3}$	$1/\sqrt{v_{\rm j}}$	(4) $1/v_j^2$				
50.	The cut in voltage of a "Si" tuni	nel diode is						
	(1) 0.7V (2)	0.3V (3)	0.1V	(4) 0V				
51.	What are the inputs (A, B, C) to get output $X = 1$ for the below combinational circuit							
	$ \begin{array}{c} A \\ B \end{array} $ $ C $	X						
	(1) $A = 1, B = 0, C = 1$	(2)	A = 1, B = 0, C =	= 0				
	(3) $A = 0, B = 1, C = 1$	(4)	A = 0, B = 0, C =	: 1				
<u>52.</u>	logic family has the lo	owest propagation dela	ny					
	(1) CMOS (2)	TTL (3)	ECL	(4) NMOS				
53.	Indicate which of the following thr	ree binary additions are	correct ?					
	(x) $1011 + 1010 = 10101$							
	(y) $1010 + 1101 = 10111$							
	(z) $1010 + 1110 = 1111$							
	(1) (x) only	(2)	(x) and (y) only					
	(3) (x) and (z) only	(4)	(x), (y) and (z)					

54. A 5-bit modulo-32 ripple counter uses JK flip flop. If the propagation delay of each FF is 50ns, the

(3) 3

(4) 2

maximum clock frequency is _____ (in MHz)

(1) 4

(2) 5

(1) 32,5,10 (2) 15,32,5 (3) 5,10,5 (4) 32,1	55.	Hov	v many states	do a 5-bit ripple	counter, rir	ng counter, .	Johnson cou	unter have res	spectively
		(1)	32,5,10	(2)	15,32,5	(3)	5,10,5	(4)	32,10,10

56.	Mat	Match the following						
	P.	A shift register can be used						
	Q.	A multiplexer can be used						

A decoder can be used

P Q R \mathbf{C} (1) D В (2) A В C C В (3) Α

 \mathbf{C}

В

Code converter

To generate memory chip select B.

C. To provide delay to the input

D. As a many to one switch

57. The number of minterms after minimizing the Boolean expression

$$[D' + AB' + A'C + AC'D + A'C'D]'$$
 is

D

(1) 1

(4)

(2) 2

(3) 3

(4) 4

58. What is the minimal form of the function represented by the K-map

	1		1
1		1	

(1) (a'b + ab')c

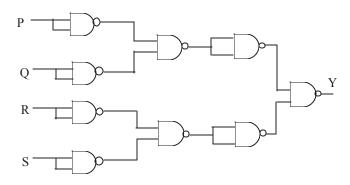
(2) (a'b + ab')c'

(3) a'b'c'

(4) $a \oplus b \oplus c$

59. A 4-bit ripple counter and a 4-bit synchronous counter are made using flip-flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then

(1) R = 10 ns, S = 40 ns

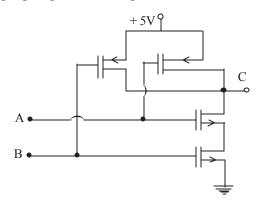

(2) R = 40 ns, S = 10 ns

(3) R = 10 ns, S = 30 ns

(4) R = 30 ns, S = 10 ns

60. For the circuit shown in Fig. the Boolean expression for the output Y in terms of inputs P, Q, R and S

is

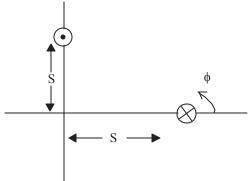


 $(1) \quad \overline{P} + \overline{Q} + \overline{R} + \overline{S}$

(2) P + Q + R + S

 $(3) \quad (\overline{P} + \overline{Q})(\overline{R} + \overline{S})$

- (4) (P+Q)(R+S)
- 61. Identify the logic gate given in the figure


- (1) NOR
- (2) NAND
- (3) AND
- (4) OR
- **62.** The AM signal $x(t) = 2(1 + 2 \cos 2 \pi (1000) t] \cos 2\pi (10^5) t$ can be detected using
 - (1) Envelope Detector
 - (2) Square Law Detector
 - (3) Synchronous Detector
 - (4) Envelope, Square Law and Synchronous Detector

- 63. A l KHz sinusoidal signal is ideally sampled at 1500 samples/sec and the sampled signal is passed through an ideal LPF with cut-off frequency 800Hz. The output signal has the frequency
 - (1) 0.25KHz
- (2) 0.5KHz
- (3) 0.15KHz
- (4) 0.75KHz
- **64.** A communication channel with AWGN operating at a signal to noise ratio SNR >> 1 and bandwidth B has capacity C₁. If SNR is doubled keeping B constant, the resultant capacity C₂ is given by
 - $(1) \quad C_2 \approx C_1 + B$

(2) $C_2 \approx C_1 + 2B$

(3) $C_2 \approx 2C_1$

- (4) $C_2 \approx C_1 + 0.3B$
- 65. The amplitude of a random signal is uniformly distributed between -5 V and +5V. If it is sampled and quantized uniformly into 130 levels, the $\ensuremath{\mathrm{S/N}_{_{\mathrm{q}}}}$ available is
 - (1) 42 dB
- (2) 48 dB
- (3) 54 dB
- (4) 60 dB
- Two identical antennas are placed in the $\theta = \frac{\pi}{2}$ plane as shown in fig. The elements have equal amplitude excitation with 180° polarity difference, operating at wavelength λ . The correct value of the magnitude of far zone resultant electric field strength normalized with that of a single element, both computed for $\phi = 0$, is

- (1) $2\cos\left(\frac{2\pi S}{\lambda}\right)$
- (2) $2\sin\left(\frac{2\pi S}{\lambda}\right)$ (3) $2\cos\left(\frac{\pi S}{\lambda}\right)$ (4) $2\sin\left(\frac{\pi S}{\lambda}\right)$
- 67. What is the free space attenuation of a satellite communication system operating at 36,000 km above the earth at 5GHz?
 - (1) 198dB
- (2) 202dB
- (3) 142dB
- (4) 138dB

68.	. Light is confined within the core of a step index fiber by										
	(1)	Refraction									
	(2)	Total internal refl	ection at the	e outer edge o	f the cladd	ing					
	(3) Total internal reflection at the core cladding boundary										
	(4) Reflection from the fiber's plastic coating										
69.	In cellular networks, simultaneous users over the same channel is achieved by:										
	I.										
	II.	II. Frequency re-use									
	III.	III. CDMA and TDMA									
	IV. Using VLRs in each area and the HLR in the network switching centre.										
	(1)	I and II	(2)	I and III	(3)	II and III	(4)	IV only			
70.	An a	antenna consisting o	of a 50 mete	r long vertical	conductor	operates over	a perfectly	conducting ground			
υ.	resis	stance and efficience	cy of the an	tenna is:				ohms. The radiation			
	resis	stance and efficience	cy of the an	tenna is:		loss resistanc $\frac{4\pi^2}{5}, 84\%$					
	resis (1)	stance and efficience $\frac{2\pi^2}{5}$, 89% ssless transmission and connected to a	(2)	tenna is: $\frac{\pi^2}{5}, 76\%$ $50 \Omega \text{ character}$	(3)	$\frac{4\pi^2}{5}$, 84%	(4) gth $\lambda/4$ is:				
	resis (1) A lo end	stance and efficience $\frac{2\pi^2}{5}$, 89% ssless transmission and connected to a	(2)	tenna is: $\frac{\pi^2}{5}, 76\%$ $50 \Omega \text{ character}$	(3)	$\frac{4\pi^2}{5}$, 84%	(4) gth $\lambda/4$ is:	$20\pi^2$, 65% short circuited at one			
71.	resis (1) A lo end sour (1)	stance and efficience $\frac{2\pi^2}{5}$, 89% ssless transmission and connected to a ce is	(2) line having an ideal vol	tenna is: $\frac{\pi^2}{5}$, 76% $50 \Omega \text{ characted tage source of } 0.02 \text{ Amp}$	(3) eristic imperformation of the following (3)	$\frac{4\pi^2}{5}, 84\%$ edance and lengther end. The cut ∞	(4) gth λ/4 is surrent dray	$20\pi^2$, 65% short circuited at one vn from the voltage			
71.	resis (1) A lo end sour (1)	stance and efficience $\frac{2\pi^2}{5}$, 89% ssless transmission and connected to a ce is 0 Amp	(2) line having an ideal vol (2)	tenna is: $\frac{\pi^2}{5}$, 76% $50 \Omega \text{ characted tage source of } 0.02 \text{ Amp}$	(3) eristic imperformation of the following (3)	$\frac{4\pi^2}{5}, 84\%$ edance and lengther end. The cut ∞	(4) $gth \lambda/4 is some arrent draw $ (4)	$20\pi^2$, 65% short circuited at one vn from the voltage			
71.	A lo end sour (1)	stance and efficience $\frac{2\pi^2}{5}$, 89% ssless transmission and connected to a rece is 0 Amp	(2) line having an ideal vol (2) ed for satell on	tenna is: $\frac{\pi^2}{5}$, 76% $50 \Omega \text{ characted tage source of } 0.02 \text{ Amp}$	(3) eristic imper f 1V at oth (3) ecause of it	$\frac{4\pi^2}{5}, 84\%$ edance and lengther end. The cut	(4) gth λ/4 is a surrent draw (4)	20π², 65% Short circuited at one wn from the voltage 0.01 Amp			
71.	A lo end sour (1) A he (1) A di	stance and efficience $\frac{2\pi^2}{5}$, 89% ssless transmission and connected to a ce is 0 Amp elical antenna is us circular polarizati broad bandwidth	line having (2) ed for satell on	tenna is: $\frac{\pi^2}{5}$, 76% 50Ω characted tage source of 0.02 Amp ite tracking be	(3) eristic imperiation of 1V at oth (3) ecause of it (2) (4)	$\frac{4\pi^2}{5}$, 84% Edance and lengther end. The curve ∞ Is maneuverability good front to	(4) gth λ/4 is surrent draw (4) ity back ratio	20π², 65% Short circuited at one wn from the voltage 0.01 Amp			

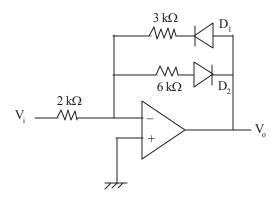
74.	Wh	ich of the following sta	atements	s is not correct?							
	(1)	Thermo couple met	ers can l	e used to measu	re DC						
	(2)	Moving coil meters	can be u	sed for measurin	g ac						
	(3)	Moving Iron meters	can be u	used for measuring	ng DC						
	(4)	(4) Moving Iron meters and thermocouple meters can be used for measuring both ac and DC									
75.	Con	Consider the following statements:									
	In a	measuring instrument	,								
	A.	Linearity is more im	portant t	han sensitivity							
	В.	High precision indic	ates high	n accuracy							
	C.	Accuracy cannot be		han resolution							
	(1)	A, B, C are correct			(2)	A and B are co					
	(3)	B and C are correct	İ		(4)	A and C are co	rrect				
76.	Wha	What is the correct sequence of the following types of ammeter and voltmeter with increasing accuracy?									
	A.	Moving iron .									
	B.	PMMC									
	C.	Induction									
	(1)	A, C, B	(2)	A, B, C	(3)	C, A, B	(4)	B, A, C			
77.		If the accuracy of a 100 mA meter is \pm 2%, then, at a reading of 50 mA, the maximum value of the actual reading may be									
	(1)	48 mA	(2)	49 mA	(3)	51 mA	(4)	52 mA			
78.	In a PCM system, the number of quantization levels is 68. If it is required to improve the existing signal to quantization noise ratio by 12 dB, the data word length required is										
	(1)	7 bits/sample	(2)	8 bits/sample	(3)	9 bits/sample	(4)	10 bits/sample			
79.	A b	A band limited source with a bandwidth of 'B' Hz is sampled at its Nyquist's rate and quantized into									
	4 le	vels. If all the Q-level	s are equ	uiprobable, the en	ntropy o	of the source in b	its/sec i	S			
	(1)	2 B	(2)	4 B	(3)	2	(4)	4			
80.		maximum percentage $V2 = 80 \text{ V} \pm 5\% \text{ wil}$		n the difference of	of two m	neasured voltages	s, when	VI= 100 V ±1%			
	(1)	± 5%	(2)	± 1%	(3)	± 10%	(4)	$\pm 25\%$			
								_			

81.	The	addition of	converts	the basic	D'arsonval m	ovement into Do	C voltme	eter			
	(1)	parallel resistor			(2)	series resistor					
	(3)	parallel capacitor			(4)	series capacito	r				
82.	The	difference between	true valu	e and me	easured value	is called as					
	(1)	Relative error			(2)	Static error					
	(3)	Linearity error			(4)	Limiting error					
83.		The accuracy of a thermometer having range of 200°C is specified as 99% of its full scale reading. If the reading is 50°C then the static error =									
	(1)	0.5°C	(2)	1°C	(3)	2°C	(4) 5	5°C			
84.	Whi	Which of the following is an Active Transducer?									
	(1)	Thermometer			(2)	Thermistor					
	(3)	Thermocouple			(4)	Strain gauge					
85.		The radiation resistance of an antenna is 40Ω and the loss resistance of 10Ω . If it has a power gain of 16, its directivity is									
	(1)	20	(2)	10	(3)	12.8	(4)	16			
86.		ich type of the foll	owing w	attmeters	cannot be us	ed for both A.C	C. and 1	D.C. powe	r		
	(1)	Dynamometer typ	e		(2)	Electrostatic ty	ype				
	(3)	Induction type			(4)	Electromagnet	ic type				
87.	to be	RC Coupled CE ample short at signal frequent the circuit, which on the input resistance. The input resistance Both input resistance.	ency and ne of the ne R _i increase R _i decrease R _i and	the effect following ases and t eases and I the magn	of output resists statements is T he magnitude of the magnitude nitude of voltag	ance R_0 can be ignored RUE? of voltage gain A of voltage gain A_0 decrease	gnored. I _v decrea A _v incre ase	fC_{E} is disc			

- 88. To draw ac equivalent circuit of a Transistor, all
 - DC sources are shorted
 - b. ac sources are shorted
 - DC sources are opened c.
 - ac sources connected to DC sources d.
 - (1) b and d

(2) a and b

(3) a only


- (4) c and d
- **89.** A source follower has a voltage gain of
 - (1) gm*rd

(2) gm *rs

(3) (gm *rs) / (1+gm*rs)

(4) (gm *rd)/(1+gm *rd)

90.

In the above circuit, assuming op-amp, D_1 and D_2 are ideal, if $V_i = 2$ volts, the o/p V_o is

- (1) 6 V

- (2) -3 V (3) -8 V (4) -2 V
- 91. The output voltage of OPAMP for input voltage of V_1 = 150 μV ; V_2 = 140 μV and differential gain of $A_d = 4000$, the value of CMRR is 100 is
 - (1) 45.8 mV

(2) 40.66 mV

(3) $10 \mu V$

(4) $145 \mu V$

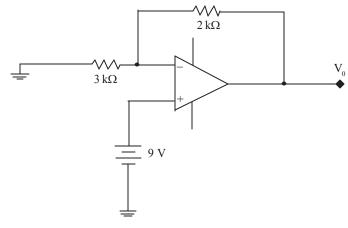
- 92. Match the following
 - A. BJT

- P. Population inversion
- B. MOS capacitor
- Q. Pinch-off voltage
- C. LASER diode
- R. Early effect

D. JFET

- S. Flat-band voltage
- (1) A-S, B-P, C-R, D-Q

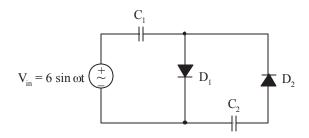
(2) A-R, B-S, C-P, D-Q


(3) A-P, B-Q, C-R, D-S

- (4) A-Q, B-R, C-P, D-S
- **93.** Which of the following are valid with respect to a lead compensating network?
 - (a) It improves response time
 - (b) It stabilizes the system having low phase margin
 - (c) It results in moderate increase in gain without affecting stability
 - (d) Increases resonant frequency
 - (1) (a) and (b)

(2) (a) and (c)

(3) (a), (c) and (d)


- (4) (a), (b), (c) and (d)
- 94. The Q-point in a voltage amplifier is selected in the middle of the active region because
 - (1) It gives better stability
 - (2) The circuit needs a small no. of capacitors
 - (3) The biasing circuit need less number of resistors
 - (4) It gives distortion less output
- **95.** If the op-amp is ideal, What is the value of V_0 for circuit given below

(1) 10 V

- (2) 15 V
- (3) 3 V
- (4) 6 V

96. The diodes and capacitors shown in the circuit are ideal. The voltage across C₂ is

(1) 6 V

- (2) 12 V
- (3) 18 V
- (4) 20 V

97. Match the following

List - 1

List - 2

- (a) Wein bridge
- (p) RF oscillator, two inductances and one capacitance in the reactance network
- (b) Colpitts
- (q) LC oscillator for RF frequency: three capacitances and one inductance in the reactance network
- (c) Hartley
- (r) RC oscillator for audio frequency applications
- (d) Clapp
- (s) RF oscillator, two capacitances and one inductance in the reactance network
- (a) (b) (c) (d)

(r)

- (1) (q) (p) (s)
- (2) (q) (s) (p) (r)
- (3) (r) (s) (p) (q)
- (4) (r) (p) (s) (q)
- 98. An op-amp has a slew rate of 5 $V/\mu S$. At its output, the largest sinewave output voltage possible at frequency of 1 MHz is
 - (1) 10π volts
- (2) 5 volts
- (3) $5/\pi$ volts
- (4) $5/2\pi$ volts

99. There are 4 sources S_i (i = 1, 2, 3, 4), each transmitting 2 messages with the respective probabilities as shown below

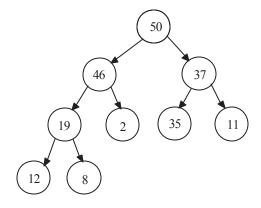
Source	Message	Probability			
S_1	m ₁₁	0.9			
	m ₁₂	0.1			
S_2	$m_{21}^{}$	0.6			
	m_{22}	0.4			
S_3	S ₃₁	0.5			
	S ₃₂	0.5			
S_4	S ₄₁	1			
	S ₄₂	0			

The sources carrying maximum and minimum average information/message respectively are

- (1) S_3, S_1
- (2) S_1, S_2
- (3) S_3, S_4
- $(4) S_4, S_2$
- **100.** To implement Y=ABCD using only two input NAND gates, minimum number of NAND gates required are _____
 - (1) 5

- (2) 7
- (3) 6
- (4) 8

- 101. Memory Buffer Register (MBR) is
 - (1) hardware memory device which denotes the location of the current instruction being executed
 - (2) a group of electrical circuits (hardware), that performs the intent of instructions fetched from memory
 - (3) contains the address of the memory location that is to be read from or stored into
 - (4) contains a copy of the designated memory location specified by the MAR after a "read" or the new contents of the memory prior to a "write"
- 102. A collection of related fields in data organization is called
 - (1) Group
- (2) Register
- (3) File
- (4) Organization


- **103.** In a reproduced picture in a TV receiver, the left hand portion is too broad, and the right portion is too thin. This is due to
 - (1) Poor vertical scanning

(2) Poor interlacing

(3) Poor synchronization

(4) Poor horizontal scanning

104.

The above given Tree is

(1) Complete and heap

(2) Full and complete

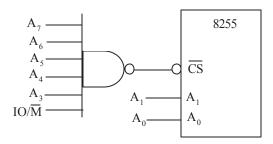
(3) Full

(4) Heap

105. We can use C++ as

- (1) Procedural language only
- (2) Object oriented language only
- (3) Both Object oriented and Procedural language
- (4) Neither Object oriented nor Procedural language

106. CISC stands for


- (1) Common instruction set computers
- (2) Complex instruction set compilers
- (3) Complex instruction set computers
- (4) Compound instruction set computers

107. Virtual memory consists of

- (1) Magnetic memory
- (2) Dynamic RAM
- (3) Static RAM
- (4) ROM

108. Sc.	hemas are like _	in DBN	4S				
(1)	Stacks	(2)	Files	(3)	Folders	(4)	Databases
109. W	hich of the follow	wing is correct	?				
(1)	Address Bus	is a Bidirection	al Bus				
(2)	Data Bus is a	Bidirectional E	Bus				
(3)	Both Address	s Bus and Data	Bus are bidi	irectional			
(4)	Neither Addr	ress Bus nor Da	ta Bus is bid	lirectional			
110. If t	the data is availa	ble in the instru	action itself,	it is called	addressir	ng mode	
(1)	Direct	(2)	Register	(3)	Immediate	(4)	Indirect
111. Co	onsider the sequ	uence of 8085	instructions	s givenbelo	ow:		
	LXI	Н,	9258				
	MOV	A,	M				
	CMA						
	MOV	M,	A				
wh	nich one of the fo	ollowing is perf	ormed by thi	is sequence'	?		
(1)	Contents of le	ocation 9258 ar	re moved to	the accumu	ılator		
(2)	Contents of	location 9258 a	re compared	l with the co	ontents of accur	mulator	
(3)	Contents of	location 9258 a	re complem	ented and s	stored in location	n 9258	
(4)	Contents of le	ocation 5892 at	re compleme	ented and st	tored in location	n 5892	
112. As	sertion (A) :	A look-ahead	l carry adder	is a fast ac	lder		
Re	eason (R)	A parallel car	rv adder gen	erates sum o	digits directly from	om the ir	put digits
(1)	` '	(R) are true ar				II.	I 2
. ,				-	` ´		
(2)		(R) true but (R	() is not the (correct expl	anation of (A)		
(3)	(A) is true bu	t (R) is false					
(4)	(A) is false but	ut (R) is true					

- 113. An 8255 chip is interfaced to an 8085 microprocessor system as an I/O mapped I/O as shown in the figure. The address lines A0 and A1 of the 8085 are used by the 8255 chip to decode internally its three ports and the control register. The address lines A0 to A7 as well as the IO/M' signal are used for address decoding. The range of addressees for which the 8255 chip would get selected is
 - (1) F8H-FBH
- (2) F8H-FCH
- (3) F8H-FFH
- (4) F0H F7H

114. For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is

3000 MVI A, 45H

3002 MOV B, A

3003 STC

3004 CMC

3005 RAR

3006 XRAB

(1) 00H

- (2) 45H
- (3) 67H
- (4) E7H
- **115.** In an 8085 microprocessor, the instruction CMP B has been executed while the content of the accumulator is less than that of register B. As a result,
 - (1) Carry flag will be set but Zero flag will be reset
 - (2) Carry flag will be reset but Zero flag will be set
 - (3) Both Carry flag and Zero flag will be reset
 - (4) Both Carry flag and Zero flag will be set

		• •			ne interfac		1	
(1	1)	TRAP	(2)	RESET	(3)	HOLD	(4)	READY
1 17. W	Vhi	ch of the following f	lag is 1	not available i	n 8085			
(1	1)	Sign flag			(2)	Overflow flag		
(3	3)	Zero flag			(4)	Auxiliary carry	y flag	
118. W	Vhi	ch register is used in I	O oper	ration in 8085				
(1	1)	SP	(2)	IR	(3)	A	(4)	B-C pair
19. T	he	minimum number of a	address	lines required	to address	s 256 kb of mer	nory are	
(1	1)	8	(2)	16	(3)	18	(4)	20
1 20. T	he	RST 5.5 interrupt se	ervice 1	outine start f	rom locat	ion		
	he l)	RST 5.5 interrupt se 0020H		outine start f		ion 0028H	(4)	002CH
(1 121. T	he	•	(2)	0024Н	(3)	0028H		
(1 121. T	he	0020H stack is a specialized	(2)	0024Н	(3)	0028H		
(1 1 21. Tin	henstru	0020H stack is a specialized uctions	(2)	0024Н	(3)	0028H emory during _	, load	
(1 121. Tr in (1 (3	The instruction of the structure of the	oo20H stack is a specialized uctions random, store, load	(2)	0024H ary	(3) access m (2) (4)	emory during _ random, push,	, load	
(1 121. Tr in (1 (3	The astro	stack is a specialized uctions random, store, load sequential, store, pop	(2)	0024H ary	(3) access m (2) (4)	emory during _ random, push, sequential, pus	, load sh, pop	
(1 121. Tr im (1 (3 122. B	The astro	stack is a specialized uctions random, store, load sequential, store, pop	tempor	aryture tubes are dc bias	(3) access m (2) (4) for the (3)	emory during _ random, push, sequential, pus ac video signa	, load sh, pop	_ and

	If th							
	(1)	10 μs	(2)	56 μs	(3)	6.4 μs	(4)	83 μs
125.	The	Boolean expressi	on $(x + y)$	$(x + \overline{y})(\overline{x} +$	y) is equ	al to		
	(1)	\overline{x} y	(2)	x y	(3)	xy	(4)	$\overline{x}\overline{y}$
126.	Whi	ich one of the follo	owing antenr	nas is best exc	cited from a	a waveguide		
	(1)	Biconical	(2)	Horn	(3)	Helical	(4)	Discone
127.	The	microwave link r	repeaters are	typically 50 l	km apart			
	(1)	To overcome att	mospheric a	ttenuation				
	(2)	Because of outp	ut tube powe	er limitations				
	(3)	Because of earth	n's curvature					
	(4)	To ensure that the	ne applied do	e voltage is no	ot excessive	e		
28.	The		r saving in a	n AM-SSB-S			o AM-DS	B-FC signal at 25%
128.	The Moo	percentage powe	r saving in a	n AM-SSB-S	C signal w		o AM-DS (4)	B-FC signal at 25%
128.	The Moo	percentage powe dulation, under To	r saving in a one Modulati	n AM-SSB-S ion is	C signal w	with reference to $\frac{32}{33}\%$	(4)	25%
128.	The Moo	percentage power dulation, under To $\frac{65}{66}\%$	r saving in a one Modulati	n AM-SSB-S ion is	C signal w	with reference to $\frac{32}{33}\%$	(4) tech	25%
129.	The Moo	percentage power dulation, under To $\frac{65}{66}\%$ igital Time Division bit stuffing	r saving in a one Modulation (2) on multiplex (2) ing, the sync	in AM-SSB-S ion is 50% ing, synchroni bit coding	(3) ization is po	with reference to $\frac{32}{33}\%$ erformed by bit interleaving	(4) tech	25% nique
129.	The Moo (1) In di (1) In N usin	percentage power dulation, under To $\frac{65}{66}\%$ igital Time Division bit stuffing by a shaping pulses with	r saving in a one Modulation (2) on multiplex (2) ing, the sync	in AM-SSB-S ion is 50% ing, synchroni bit coding chronizing pro- spectrum	(3) Exaction is possiblems can	with reference to $\frac{32}{33}\%$ erformed by bit interleaving be reduced by	(4)tech ag (4)th	25% nique bit surfing
128. 129.	The Moo (1) In di (1) In N usin (1) An A	percentage power dulation, under Town 165 % igital Time Division bit stuffing Iyquist pulse shap g pulses with reducing, sine	r saving in a one Modulation (2) on multiplex: (2) ing, the synce roll off (2) iication chan	in AM-SSB-S ion is 50% ing, synchroni bit coding chronizing pro spectrum reducing, con anel operating	(3) ization is possiblems can sine (3) at an SNR	with reference to $\frac{32}{33}\%$ erformed by bit interleaving be reduced by increasing, sin >>> 1 and Band	(4)tech ag (4)tltltltltdtltd	nique bit surfing ne signaling rate and

		microwave link having a lived power density at 1		• '		watts, transmitting	anteni	na of 10 dB gain, the
	1) 1		(2)		(3)	100	(4)	1000
133. T	Гће	dominant mode in a hol	low re	ectangular wavegui	de is			
(1)	TE10	(2)	TM10	(3)	TEM	(4)	TE11
134. (Cons	sider the following casc	ade o	f two causal systen	ns			
		$X(t) \qquad H_1(s) = 1$		$H_2(s) = \frac{1}{s+1}$		<u>y(t)</u> →		
Т	Гће	unit impulse response o	of the	cascade is				
(1)	$e^t \cdot u(-t)$	(2)	$e^t \cdot u(t)$	(3)	$e^{-t}u(t)$	(4)	$e^{-t} \cdot u(-t)$
135. I	fthe	e broad dimension of a r	ectang	gular guide is 3.0 cı	n, it's	dominated mode c	ut-of	frequency is
(1)	3 GHz	(2)	5 GHz	(3)	10 GHz	(4)	6 GHz
136. F	Ferr	ite microwave devices	are					
(1)	Passive, reciprocal			(2)	Passive, non-reci	proca	1
(.	3)	Active, reciprocal			(4)	Active, non-recip	rocal	
137. T	Гће	frequency deviation of	the A	ngle Modulated si	gnal x	$x(t) = \cos(2000 \pi t)$	+ 20	$0 t^2) \text{ for } 0 \le t \le 1 \text{ in}$
F	Hz is			20		. 20		. 40
(1)	$\frac{10}{\pi}$	(2)	$\frac{20}{\pi}$	(3)	$\frac{30}{\pi}$	(4)	$\frac{40}{\pi}$
138. A	٩V	SWR meter operates ty	picall	y at				
(1)	1 GHz	(2)	10 GHz	(3)	1 MHz	(4)	1 kHz

139. The scattering matrix of magic tee is

$$(1) \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

140. The biggest advantage of the TRAPATT diode over the IMPATT diode is its

(1) lower noise

- (2) higher efficiency
- (3) ability to operate at high frequencies
- (4) lesser sensitivity to harmonics

141. A Gunn diode is a negative resistance device, which is used as source of microwaves. What is the number of p-n junctions available in it?

(1) 1

- (2) 2
- (3) 3
- (4) 0

142. A reflectometer consists of

(1) Two directional couplers

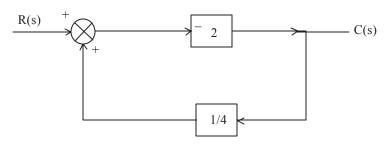
- (2) One directional coupler and an insulator
- (3) One directional coupler and a circulator
- (4) Two directional couplers and a circulator

143. To avoid difficulties with strapping at high frequencies, what type of cavity structure is used in the magnetron?

(1) Hole and Slot

(2) Slot

(3) Vane

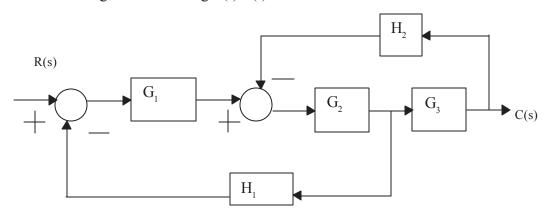

(4) Rising Sun

144	. The	full form of MASER is						
	(1)	Microwave amplificati	on by	stimulated emiss	ion of r	adiation		
	(2)	Microwave antenna by	stim	ulated emission o	f radiat	ion		
	(3)	Microwave amplificati	on for	r simultaneous em	nission (of radiation		
	(4)	Microwave antenna fo	r sim	ultaneous emission	n of rac	liation		
145	. The	Modulation Scheme use	ed in	GSM is				
	(1)	FSK	(2)	GMSK	(3)	OQPSK	(4)	QAM
146	. Equ	ivalent of decimal value	of 1	78 in straight bina	ary code	e is and	l in BC	CD is
	(1)	11000,11111111			(2)	10111101,1000	00	
	(3)	10110010,101111000)		(4)	111111,1100000	0	
147	. The	Post fix form for the IN	IFIX	form of (a+b*c)				
	(1)	bac*+	(2)	abc*+	(3)	bac+*	(4)	abc+*
148	. Mat	tch the following						
	A.	SRAM	a.	non volatile				
	B.	DRAM	b.	less power				
	C.	ROM	c.	costly				
	D.	Hard disk	d.	large size				
	(1)	c,a,b,d	(2)	c,b,a,d	(3)	d,a,b,c	(4)	d,b,a,c
149	. Hov	w will you free the allo	ocated	d memory?				
	(1)	remove(var-name)			(2)	free(var-name)		
	(3)	delete(var-name)			(4)	dalloc(var-name	e)	
150	. In w	which of the following te	chnol	ogies is the term I	HFC us	ed?		
	(1)	DSL	(2)	PPPoE	(3)	Dedicated T1	(4)	Frame relay

- **151.** What radar measurement of an object is referred to true north
 - (1) Height
- (2) Surface angle
- (3) Vertical angle
- (4) One-way distance
- 152. Given the pulse width of 8µs and duty cycle of 8%, the pulse repetition time of radar system is
 - (1) $1 \mu s$

- (2) $10 \mu s$
- (3) $100 \mu s$
- (4) 1000 μs
- 153. The angle between rotating axis and beam axis in conical scanning is called
 - (1) Incident angle
- (2) Reflected angle
- (3) Squint angle
- (4) Beam angle

154. The closed loop gain of the following system is



(1) -4

(2) 4

- $(3) -\frac{4}{3}$
- $(4) \frac{4}{3}$

155. For the block diagram shown in fig C(s)/R(s) is

- $(1) \quad G_{_{1}}G_{_{2}}G_{_{3}}/(1+H_{_{2}}G_{_{2}}G_{_{3}}+H_{_{1}}G_{_{1}}G_{_{2}})$
- (2) $G_1G_2G_3/(1+G_1G_2G_3H_1H_2)$
- (3) $G_1G_2G_3/(1+G_1G_2G_3H_1+G_1G_2G_3H_2)$
- (4) $G_1G_2G_3/(1+G_1G_2G_3H_1)$

	(1)	81	(2)	9	(3)	3	(4)	72
157.	Con s-pla	sider the equation 2	$2s^4+s^3+3s$	s ² +5s+10=0.	This equat	ion has	roots	in the right half of
	(1)	one	(2)	two	(3)	three	(4)	four
158.		econd order system h		_	• • • • •		-	
	(1)	π sec	(2)	$\pi/3$ sec	(3)	$2\pi/3$ sec	(4)	$\pi/2$ sec
159.	Roo	ts of system's charac	eteristic ed	quation are sa	me as			
	(1)	The closed loop po	oles		(2)	The open loo	p poles	
	(3)	The closed loop po	oles and z	eros	(4)	The closed lo	op zeros	
160.	For	a system given by C	G(s) H(s) =	=k/[(s(s+1)(s+	-2)(s+3)], 1	the number of	separate i	root loci is
	(1)	1	(2)	2	(3)	3	(4)	4
161.	A sy	ystem has a single po	le at origi	n. Its impulse	response v	vill be		
	(1)	Constant			(2)	Ramp		
	(3)	Decaying exponent	ial		(4)	Oscillatory		
	For	a second-order syste	em with th	e closed loop	transfer fu	nction $T(s) =$	$\frac{16}{s^2 + 6s}$	the settling time
162.		econds for 2% band	ic					
162.	in se	conus for 2/0 band	13					

163	. Wh	ich of the following poin	nts is 1	not on the root-loc	us of t	he system with the	e open	loop transfer
	func	etion $G(s) H(s) = \frac{1}{s(s + s)}$	3)(s	+ 5)				
	(1)	-4	(2)	-3	(3)	-2	(4)	$-\infty$
164	. A u	nity feedback system h	as op	en loop transfer fu	unction	$G(s) = \frac{2}{(s+1)}$	$\frac{s}{(s+2)}$	The steady state
		onse of the closed loop						
	(1)	unit step	(2)	unit ramp	(3)	unit impulse	(4)	zero
165	. Sig	nal flow graph is used to	find					
	(1)	stability of the system			(2)	controllability of	the sy	stem
	(3)	observability of the sy	stem		(4)	transfer function	of the	system
166	. 20	db/decade is equal to						
	(1)	10 db/octave	(2)	5 db/octave	(3)	6 db/octave	(4)	20 db/octave
167	. The	phase margin of a syste	em is	0°. It represents a				
	(1)	stable system			(2)	unstable system		
	(3)	conditionally stable sy	stem		(4)	marginally stable	syste	n
168	. Dire	ect inward dialling is a fe	ature	in				
	(1)	PSTN	(2)	PBX	(3)	EPABX	(4)	VPN
169	. The	rate of the PN code in	a spre	ad spectrum syste	m is c	alled		
	(1)	Chipping Frequency (fc)		(2)	Information rate		
	(3)	Chip			(4)	Epoch		

	III u	DS-SS systems the						
		bilt rate = 1 Mbps						
		chip rate = 7 Mbps	S					
	The	length of the memor	ry of the	PN sequence gene	rator o	of the above syste	em is	
	(1)	4	(2)	5	(3)	3	(4)	6
<u>171.</u>	In M	Manchester and differ	rential Ma	anchester encoding	, the t	ransition at the m	iddle o	f the bit is used for
	(1)	Bit transfer	(2)	Synchronization	(3)	Baud transfer	(4)	Cloud transfer
172.	Whi	ich of the following	encoding	methods does not	provid	le for synchroniza	ntion ?	
	(1)	RZ	(2)	NRZ-L	(3)	NRZ-I	(4)	Manchester
		enable DSL technolo		et service provider	must	have a	loca	ted in their networks
	to in		r modem	et service provider		have a	loca (4)	ted in their networks
	to in (1)	nteract with customer	r modem (2)	.RPR	(3)	DSLAM	(4)	PRP
	to in (1)	teract with customer	r modem (2)cabl	.RPR	(3)	DSLAM	(4)	PRP earest end office.
174.	(1) A lo (1) Whi	LAN switch	r modem (2) cabl (2) ocesses C	.RPR e that connects the Co-axial DMA channels, ar	(3) e subsection (3)	DSLAM criber telephone Fiber-optic forms digital and	(4) to the n	PRP earest end office. Coiled
174. 175.	to in (1) A loc (1) Whit for I	LAN switch cal loop has Twisted wire pair	cabl (2) cabl (2) ccesses Ccchannel a	.RPR e that connects the Co-axial DMA channels, ar	(3) e subset (3) and per the RI	DSLAM criber telephone Fiber-optic forms digital and	(4) to the n	PRP earest end office. Coiled
174. 175.	(1) A lo (1) Whit for I (1)	LAN switch cal loop has Twisted wire pair ich of these block pro	cabl (2) cabl (2) ccesses C channel a	.RPR e that connects the Co-axial DMA channels, are and interface with CCB	(3) e subsection (3) and per the Ri (3)	DSLAM criber telephone to the second	(4) to the n (4) analog (4)	PRP earest end office. Coiled ue signal processing

177.	. Wh	ich of the following is no	ot bas	ed on wideband sy	stem '	?		
	(1)	FDMA	(2)	CDMA	(3)	SSMA	(4)	FHMA
178.	The	type of multiple accessi	ng us	ed in GSM techno	logy i	S		
	(1)	FDD/TDMA	(2)	CDMA	(3)	OFDMA	(4)	SDMA
179.		TN (PUBLIC SWITCH tching to connect one ph			TWOI	RK) telephone net	works	s depend on
	(1)	Packet switching			(2)	Circuit switching		
	(3)	Network switching			(4)	Digital switching		
180.	. Dial	lling procedure for acces	sing 1	ocal, STD & ISD t	faciliti	es from extension	phone	e is through
	(1)	EPABX	(2)	Virtual calling	(3)	Conference call	(4)	Digital call
181.	450 abov	AM radio receiver is to kHz. The ratio of maximuse is	num t	•	tance	•	n requ	
	(-)		(-)		(0)		(.)	
182.	A co	omb filter is used to						
	(1)	cancel chroma crosstal	k		(2)	separate white fro	om bl	ack
	(3)	clip the sync from blan	king		(4)	separate alternation	ng fro	m direct current
183.	The	color level control is in	the					
	(1)	demodulator	(2)	BPA	(3)	AFPC	(4)	D. G-Y amplifier
184.	A cı	rystal-ringer circuit is use	ed for	the				
	(1)	Y video amplifier			(2)	AFPC on color of	scilla	tor
	(3)	color demodulator			(4)	chroma BPA		

185.	Nun	nber of lines per pictu	ire ac	cording to CCIR	-В			
	(1)	425	(2)	525	(3)	625	(4)	725
186.	Whi	ch of the following defl	ection	system is used in	mono	chrome picture	tube ?	
	(1)	Electrostatic	(2)	Electromagnetic	(3)	Dynamic	(4)	Magnetostatic
187.	The	output stage of a televis	sion tr	ansmitter is most li	kely t	o be a		
	(1)	Plate-modulated class	C am	plifier	(2)	Grid-modulat	ed class (C amplifier
	(3)	Screen-modulated class	ss C a	mplifier	(4)	Grid- modula	ted class A	A amplifier
188.	Mic	rowave links are gene	rally	preferred to coaxi	ial cal	ole for televisi	on transi	mission because
	(1)	they have less overal	ll pha	se distortion				
	(2)	they are cheaper						
	(3)	of their greater band	width					
	(4)	of their relative immu	ınity 1	o impulse noise				
189.	Whi	ch of the following fro	equen	cy is wrong				
	(1)	15,750 Hz for horizo	ntal s	sync and scanning	Ţ			
	(2)	60 Hz for vertical sy	nc an	d scanning				
	(3)	31,500 Hz for equali	sing j	oulses and serration	ons in	the vertical s	ync puls	es
	(4)	31,500 Hz for the ve	ertical	scanning frequen	ncy			
190.	Whi	ich of the following is	true	in case of the FN	M-CW	/ Doppler rada	ar?	
	(1)	it does not give the tar	get ve	elocity				
	(2)	it does give the target	positi	on				
	(3)	a duplexer is required	at the	radar				
	(4)	it gives the target range						

191.	A si	mple CW radar does not give range information	beca	use
	(1)	it uses the principle of Doppler shift		
	(2)	continuous echo cannot be associated with any	spec	ific part of the transmitted wave
	(3)	CW wave do not reflect from a target		
	(4)	multi echoes distort the information		
192.	Whi	ch of the following is the remedy for blind speed	l prob	lem
	(1)	change in Doppler frequency	(2)	use of MTI
	(3)	use of Monopulse	(4)	variation of PRF
193.	x an	d y are Boolean variables if $xy = 0$, $x \oplus y$ is equ	al to	
	(1)	$x + y$ (2) $\overline{x} + \overline{y}$	(3)	$x y$ (4) $\overline{x} \overline{y}$
194.	In a	Radar, which is used to indicate the range and o	lirecti	on of the target ?
	(1)	A – Scan	(2)	FM Altimeter
	(3)	PPI Indicator	(4)	Radar Altimeter
195.	Abb	reviation of GCA is		
	(1)	Ground-Controlled Approach	(2)	Ground-Controlled Aircraft
	(3)	Ground Cabinet Arteritis	(4)	Ground Cargo Aircraft
196.	Air	Route Surveillance Radar landing systems provide	des	
	(1)	track of all aircraft	(2)	keeps not safe and separate
	(3)	help in good weather conditions	(4)	gives direction
197.	Iden	tify the Radar systems loss among the following		
	(1)	Beam shaped loss	(2)	Elastic loss
	(3)	Iron core magnetic loss	(4)	Copper loss

198.	Whi	ch of the following can	be used to improve range	e reso	lution in a Radar		
	(1)	Short duration pulse		(2)	long duration puls	se	
	(3)	high frequency of opera	ating signal	(4)	increasing pulse v	vidth	
199.	(1)	a i	by $(2) f_{d} = 2 \lambda / v_{r}$ $(2) \text{rget}, \lambda \text{: wavelength of trains}$		u i	(4)	$f_d = \lambda/\nu_r$
200.		ace search radar normal	ly scans degr (2) 180°		azimuth	(4)	360°